TheoremLet be a closed ideal of a C* algebra , then for any self-adjoint element , there exists an such that

*Proof:* Since is a closed ideal, is also a C* algebra and one can define a natural projection homomorphism , with . Fix an element , define a continuous function as follow:

Let , then is identical on . By continuous functional calculus, . And since can be approximated by polynomials, we know . The spectral radius , so we know is identical on the spectrum of , which implies . Therefore is in the kernel of , and hence in the ideal . Since and by the Gelfand Naimark isomorphism theorem, we know and hence . So is the we are looking for.

Note: this is a homework exercise given by Dr. Carlen.